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I. INTRODUCTION

In this report, we consider in some detail various approaches to the
problem of processing data from arrays. This problem, which is frequently
referred to as the combined space -time processing problem, will be discussed
in the context of a sonar system. The general resuits are applicable tv arrzy
processing in any area,

In Section A .we will discuss some of the considerations that arise in
modelling the sonar problem and indicate some of the implications of the various
models. In Section B, we develop in detail the quantitative model that we wuil
use. In Section C, we outline the organization of the report and summarize the
principal results.

Before proceeding, it is appropriate to mention the background as -
sumed of the reader. A knowledge of random process theory at the level of
Davenport and Root (1) is necessary. In addition, the elements of statistical
detectior theory (e.g., Helstrom (%) or Ref. i, Chap. 14) and linear f{.itering
theory (Ref. 1, Chap. 11) are needed. Matrix notation and a few simple
matrix properties are used (e.g., Hildebrand ) or Beliman(4 ). In various
portions, additional background is needed; this background is contained in
Van Trees(5) .

A. PRELIMINARY CONSIDERATIONS

The basic system of interest is shown in Figure 1. The waveforms
are received by an array of hydrophones. These waveforms contain a compo-
nent due to various noise sources, which may be within the hydrophones or
external to them. In the case of active sonars, there is also reverberation
return. If a target is present, a "signal” component will be added. In the
active sonar case, this signal is a reflection of the transmitted signal from the
target. In the passive sonar case, the signal consists of sound generated by
the target itself. The purpose of processing i to obtain information about the
target from the received waveforms.

The first problem is to inveiop a suitable model for the signals and
noises.

drthur 3. Nintr Fur.
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Similarly, we can describe the signal component in the N waveforms

as s (t) and the noise component in the N waveforms as n(t). Thus, when a
target is present,

_1:(() = s(1) +_n_(t) ’I‘l =t STf

First, we consider possible methods of characterizing the signal

component s(t). Four possible characterizations come to mind:

1.

Deterministic (Known) Signais - In an active system, the shape of the
transmitted signal is known. . the channel does not distort the signal
and the target acts as a perfect point reflector, then the shape of the
signal can be considered known. This particuiar model is rarely
appropriate for the sonar case.

Deterministic Signals with Unknown Parameters - Normally the trans -
mitted signal is centered around center -frequency. For example, the
signal illuminating the target might be

sl(t) = gin mct

Even a simple target will introduce a phase angle and an attenua -
tion which will be unknown to the receiver. Thus, the reflected signal
might be

sR(t) = V_ sin (»Ct + FR)

R

where VR and GR are unkhown. Frequently, it is reasonable to

assume that ;R is a random variable with a unifurm probability density

over the interval (0,27 . The constant VR can be modelled as either

a random variable or as an unknown. non-random variable. For &
simple non-dispersive channel which is essentislly constant ¢ iring

the signalling interval. the constants can include its attenuation and

phase shift

Random Signais - If the channcl or target {luctuates while being illumi -
nated by the signal. then the signal will be distorted. Since these
fluctuations arc inhcrently random, a convenient approach 1s to view
the signal as a sample function from a random process.
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In the passive suiar case, the signal cmitted irom the tar-
get is caused by a varicty of things such as engine noise or propeller
noise. Here, the signal source is inherently random.

In both of these cases, one usually knows enough about the
physical situation to be able to specify the approximate second -moment
charactenistics of the process (i.e., the mean value function and the
covariance function). Frequently the physical origins of the random -
ness are such that one can assume the process is a Gaussian random
process. In this case, the second-moment properties provide a com -
plete characterization.

Once we have assigned statistical properties to the signal,
we would expect that any optimum processing schemes we design will
be good on the average. In other words, any particular time the
experiment is conducted the performance may be good or bad. but
when averaged over the assumed signal ensemble the performance will
be optimum,

In many cases it is difficult to assign statistical propertics
to the signal. Alternately. we may want to design a test that wi'l be
optimum for the particular signal present {as ccntrasted to a signal
ensembie). In aese situations, a fourth model is appropriate.

4. Non-Random, Unknown Signals - In this case, we assume that the N
signal inputs si.(t), sz(t), cen sN (t) are unknown. We want to design

processors that are good for the particular set that is present (not
some average signal set).

Next, we consider characterizations for the noise. As mentioned
earlicer, the possible sources include 1) hydrophone noise, 2) ambient noise,
and 3) reverberation noise in active systems. The first two arise trom the
combined effect of many small, independent sources. According to the Ceatral
Limit Theorem, one can model these as Gaussian (normally stationary) random
processes.

Reverberation noise is caused by the reflection of the transmitted
signal from various objects in the ocean. Its properties will be a function of
the transmitted signal shape and the reflection mechanism. A detailed deri-
vation of a possible mathematical model is given by Kelly and Lerner (6) (see
also Refs. 7 and 8). If onc assumes a large number of small reflectors, one
is led te a Gaussian process model which is non-stationary and has character-
istics that depend on the transmitted signal.

drthur D.ttle, I,




Accordingly, we will assume that th~ noise is a sample function from
a Gaussian random process with known statistical propertics.

In addition to developing a suitable model for the signal and noise
environinent, we must establish the goal of our processing system and specify
a criterion to measure how closely the system achieves this goal.

We will discuss some possible criteria for the various signal models
suggested above.

1. Case l

When the shape of the transmitted signal is known, the question of
interest is normally whether or not the target is present. This is a binary
hypothesis testing problem. The received waveform under the two hypotheses is:

H,: r(t) = s(t) + a(t) 'I‘i <t < T, (target present)
1 - - - H

H(} () = n (t) 'I‘i <t < Tf (target absent)

Using either a Bayes or Neyman-Pearson criterion,one is led to a
likelihood ratio test. QOne operates on the waveform r(t) to construct the function,

o "p(r ()| H)"
Mr@) = ———ror
A Y AGIEN
(The quotation marks emphasize that we must be careful about the
meaning of these expressions.)

One then compares A to some threshoid n, which is chosen as a
function of cost in the Bayes case or to achieve a desired Pg in the Neyman -
Pearson case.

The resulting processor for known s (t) turns out to be a matrix
linear filter with N inputs and 1 output.

Alternately, one cannot assume the noise is Gaussian if only the
second -moment properties of the noise are known. Then, one does not have
enough information to construct A(r(t)). A plausible approach in this -ase is
to require a linear processor (once:lgain, with N inputs and 1 output) and try
to maximize the output signal-to-noise ratio,

drthur . Little, Ine.




(ouiput due to s (1) at 'I‘f)2
S

N T E [(output due to n (t) at Tp) ]

(The symbol E denotes expectation.)

It is straightforward to show that these two cr:teria lead to identical
resuits.

2. Case 2

If the unknown parameters are random and the problem is one of
detection, the procedure is identical to Case !. However, if the parameters
are non-random or if we want to estimate them, the procedure must be modified.

3. Case 3
For random signals, two possibilities exist.

First, if detection is the problem of interest, we are once again led
to a likelihood ratio test. To construct the likelihood function, it is necessary
to characterize the signal process completely. The mest common process
model is a Gaussian model. As discussed above, the second-moment charac-
terization then provides a complete description. In our detailed discussion, we
will encounter certain cases in which the Gaussian signal assumption will be
valid. The resulting processor is a quadratic device.

Second, it is oiten desirable to estimate what the signal component
of the input is. Since both the signal and noise are sample functions of a ran-
dom process, a minimum mean-square error estimate is appropriate. We
denote this MMSE estimate by é_(t). Under the assumption that the signal and
noise process are both Gaussian, é(t) is obtained by using a linear processor.
On the other hand, the Gaussian signal process assumption is not invoked, the
form of the processor must be specified. If we ask for the best linear MMSE
estimate, we can solve the problem using only second-moment properties of
the process. The resulting estimates are the same in both cases.

Aethur D Little, In..




4., Case 4

For non-random but unknown signals, the desired procedure is less

obvious. There are two possibilities, which are analogous to those outlined in
Case 3.

One can construct a generalized likelihood ratio test:

max ,, =
h o g g PEOTH

"p (£ (O] Hy I'

and compare A, to some threshold adjusted to give the desired false alarm
probability. The numerator is found by making a maximum likelihood estimate
of s (t) and substituting it into the probability density. This test has no claim
to optimality but is intuitively logical and frequently performs well.

The analogy to a minimum mean -square error estimate of a sample
function is the maximum likelihood estimate of a non-random function. If one
does not invoke the Gaussian assumption on the noise, then it is appropriate to
ask what sort of estimate of s (t) can be obtained using a linear filter. An
appropriate criterion might beto require the output to equal s (t) exactly if the
noise were absent. Subject to this constraint, we design the linear filter to
minimize the distortion due to noise. The resulting estimate is found to be the
same as the maximum -likelihood estimate.

In this section, we have discussed some of the considerations that
are involved in choosing an appropriate mathematical model for the physical
problem of interest. We will concentrate our attention on Cases 3 and 4; the
noise will be modelled as a sample function from a Gaussian random process,
and the signal will be modelled either as a sample function from a Gaussian
random process or as a non-random, but unkaown, waveform.

We shall now specify this model in detail.

B. QUANTITATIVE MODEL

The general model is easily stated. The received waveforms of
interest are r, (t), --- r; (). First, consider the noise components,

nj (t), --- AN (t). We denote these by the vector n(t). The following proper-
ties are assumed;

1. Each noisenj(t) ;i=1,2, --+ N is a sample function
from a zero-mean Gaussian process.

drethur D.Little, Iue.




2. The noise processes are jointly Gaussian.

3. Statements (1) and (2) are equivalent to saying
that n (t) is a zero-mean vector Gaussian process.

4, The vector process is completely characterized by
its covariance matrix,

pa—

n

K (t,u) K (t,u)
"1 L)

K (t,u) K (t,u)
nznl n2n2

KwsE[n@Onw]=| :

K n (t,u)
1

N

L

K (t,u)
nyng

Kn a (t,u)
N N

(Observe that the covariance function and correlation function are the same

because of the zero-mean assumption,)

5. We further assume that each noise function contains
a non-zero "white" component which is independent
of the remaining noise function and of the "white"
components in the other noise waveforms. Thus,
we may write

nl(t) = wl(t) + ncl(t)

where w (t) represents the white component and

n, (t) is the remaining colored noise component.
1

Kn (t,u) = Kw (t,u) + Kn (t,u)
1 1 C
N
= 5 € (t-u) + Kn (t,u)

“

!
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For algebraic simplicity, we assume that the white
components in each process are equal. (The general
case is a trivial modification.)

The covariance matrix of the vector process is:

No

gn(t,u) = 5 £ (t-u)l + Ec(t,u)
where I is the identity matrix and K (t,u) is the
covariance matrix of the colored noiSes.

Physically, this white component may correspond to
internal noise in the hydrophone and its associated
circuitry. Since its bandwidth is wider than any
signals of interest, we may model it as a process with
a flat spectrum at all frequencies.

We assume that the colored noise component has finite
energy. This implies that

T
Jf I_(_C(t,u) 5’:(1&) dtdu < =

T,

Observe that we do not need to be explicit about the
noise sources. Any Gaussian noise source which leads
to the same vector covariance function will be treated
alike. Later, in some examples, we will see how
various noise fields give rise to particular covariance
functions.

The signal is also characterized by a vector i(t)'

Under the Gaussian assumption, we denote its covariance by
Kg {t,u) and assume it is zero-mean. It does not contain a
white component. For simplicity, we assume it is indepen-
dent of the noise process.

Observe that this would not be true if the channel or target
fluctuated while being illuminated by the signal, because
the transmitted signal would influence both the returned
signal process and the reverberation noise. The modifi-
cation to include this coupling is straightforward.

drthur B Uittle Inc,
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For the general developments, no further restrictions on the
components of s(t) are nceded. A special case that we will emphasize in
most of our cxamples is one in which each signal sj(t) is a shifted version
of the same signal.

si(t)=s(t-1i) i=12, N (1)

where the Ti are known.

Physically, the simplest case this might correspond to is a point
target and plane-wave propagation. Neither of these assumptions are
necessary.

Under the non-random signal assumption, s(t) is simply an
unknown vector. Once again. we will emphasize the case described by

Eq. (1).

ORGANIZATION AND PRINCIPAL RESULTS

In Chapters II and IIl we study the random signal case in some detail.

First, we find the form of the optimum processor for the general case. Then
we look at some interesting special cases and evaluate their performance.

In Chapter IV we study the non-random, but unknown, signal problem,

In Chapter V we look at the special case in which the signal vector

satisfied Eq. (1)and the noise is homogeneous (i.e., Kp.(t,u) is not a function
of i). The notion of array gain is encountered and its significance discussed.

In Chapters VI and V1I we consider some particular examples of dis-

tributed and directional noise fields .

Finally, in Chapter VIII we summarize the results and suggest some

future work.

The principal result is the demonstration that, for a large class of

problems, the basic structure of the optimum processor does not depend on the
signal case of interest nor on the criterion used. Specifically, we will arrive

at a receiver in which the only matrix operation is invariant to the above assump-
tions and the solutions to all of the above problems appear at various points of
the receiver,

A secondary result is some insight into situations in which optimum

processing may he worthwhilc.

10

drthur B Nidle Fnc.




II. GAUSSIAN SIGNALS IN GAUSSIAN NOISE

In this chapter we derive the optimum detector for the random s.gnal
process described in Case 3.

The basic derivation is not restricted to the array processing case.
Historically, the essential results were first obtained by Price in 1954 during
his studies on multiple scatter links for communication.(?»10.11 In 1959 the
problem was studied in a different context by wolf.(12) Recently, Bryn“s) re-
derived the results for the special case of stationary processes and infinite
time intervals, Middleton and Groginsky(14) have also studied the array
problem.

A, DERIVATION GF LRT

As discussed in the introduction, the target or channel changes
appreciably during the observation interval in many active sonar situations.
Thus, even though the transmitted signal is completely known, the effect of the
transmission path or the target reflection mechanism causes the returned wave -
form to have a random behavior. With passive sonar, the actual generated
waveform has a non-deterministic character.

A Gaussian model is suitable for this situation. In the absence of a
target, the received waveform will consist of contributions due to the various
types of noises discussed above. As before, we call this hypothesis HO:

r0 =00 [H] (2)

We will assume that there is a non-zero amount of noise generated at
each hydrophone. This noise is statistically independent at the various elements
in the array and is assumed to be "white" over the frequency ranges of interest.
To emphasize this white noise component, we will occasionally write

n() = w(n) +n (1) &)

11
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The covariance matrix under H0 is:

Eo(t'u) ¢ E Lr_(t) _r_T(u): HO is truc]

A
=& [n0n’w ] =k v (4)
N
2 —59 _1_ + E—c (t,u)
0

Under hypothesis H. there is an additional random component due
to the target:

r(t) = s(t: &) + n(v) (5

The signal s {t: {4) is a sample function from a Gaussian random
process. For our present purposes, it is adequate to assume that the process
is zero-mean.

The covariance under Hy is:

K, £ E [0 -m@3 '@ mlw]] ©

>

Es(t,u) + En(t,u).

since we assumed the mean is zero.

To solve the detection problem, we must compute the likelihood ratio
and compare it to a threshold. The likelihood ratio test is

p[_r_(!)iHl )

LR

Mr) = g (73)

pir( H,

12
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There are several ways of formulating this likelihood ratio. A
method chat leads to simple interpretation of the result is to construct i (r(t))
as a ratio of two fractions;

plrwin ] efrwing]

M) = — : -
plr® lw@ony | pre | w(o ony |

(7b)

It is easy to show that both terms exist. Since they have a similar
struciure, it is adequate to study the first term in detail.

1 N Tt

—— , 1 T

. /2 TT yoenly [ daur 0z
Pl H) ] Jim =t Ti
plxw woony] N7 N L g

— > expl- — J r (t)r(t) de
N/2 i N - Ve

@ is o T (8)

where the A are the scalar eigenvalues in the vector Karhunen-Loéve
expansion' and Ql (t,u) is the inversc matrix kernel.

The inverse matrix kernel satisfies the equation

Ty
K l(t.u) 91 (u,z) du = 5((-2)_1_ (9)

i
In terms of the vector eigenfunctions

No

: ,C;\ R *T
K, (tu) = 1)21 (_2. LR RN O O (10)
or
No
e — 4
S R (1

t The vector Karhunen -Loéve expansion was developed by Kelly and Root .“5)

13
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Taking the ,ogarithm of Eq. (8). we have:

Tf
= N . 2
tn A(x(t) = _2_ L n (l + = ,‘l- ]5 JJ dt du LT(t) [Q_x (t,u) _N_O-l-('(t-u)]i(m
1=1 T;
1 (12a)

The first term represents 2 bias which is not dependent on the received wave-
{criw; the 2econd term represents the operation on the received waveform.,

We will first develop two cancnic forms for the operation on the re-
ceived data and then develop a convenient expression for the bias term. We will
denote the period term by the symbol L. The total test will consist of (wo terms
like Eq. (12a).

Using Eqs. (7b) and (12a), we sce that the likelihood ratio test becomes:

Ty
24 |] atau r (o) [Q () - == 17 (t-0) | r (u)
2 - 0 J-
T;
Ty
T r 2
- o ¢
+3 “ dt du T () | Qylt.u) R, 14 u) r (u)
T;
(12b)
, : 2 ey, T2 e
2T gLt Pt LU Y
1= 0 1= l O
=y
We will initially investigate the first term on the left-hand side of
Eq. (12b).
1. Receiver Structure 2}
To find 2 conventent form we divide the covariance function into two
parns:
N()
K, (tbu) = — ‘(t-y) 1+ K_ (t.0) (13)
=1 2 - -

1

14
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We want to find a solution to Eq (9) with the following form:

2
Q, () = {teo1- b, (t. } (14)

Substituting into Eq. (9), we have

N, Ty
!(c (t.u) = + -5 gt (t.u) +J 5c (t.2) p_c (z,u) dz T,l <t,u STf
-1 1 T 1 1
1
(15
A formal solution ¢an be obtained by writing
(.3
: T
h (t.u) = h o () = (u) (16)
- i ~
1 i=1
Substituting into Eq. (15) and using Eq. (10), we have:
2
1 NO i
h, = 2 .¢
e =0 (17)
g !

Using Eqs. (12) and (14). we see that the lirst quadratic form on the
left side of Eq. (12b) is:
Ty

ooy T
+ R‘,- “ de dv r (v ["“l (1. u) r (u) {15)
ar T[

Now the inner integral in Eq. (18) »s famil:ar from optimum {iiter
theory (c.g.. Ref. 5. Chap. 6).

T

PR, (W z (s 5L HD) + R () (19)
T (l N

)

IR
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Thus, the operation represented by the inner integral in Eq. (18) is
cquivalent to an estimation of the non-white portion of the input, assuming that
Hl is true.

Proceeding in an identical manner with the second term in Eq. (12b),
we obtain the receiver shown in Figure 2.

i r

T
f
. i
:> hc‘(f,u)-bcz(',u) _—‘.">2:(.) N-o f“' °> ¥
T.
]

FIGURE 2 RECEIVER STRUCTURE #1

We observe that there is only one filter in the receiver.
h () 4~ [h (tu) - h (tu):] (20)
“A( ! = No L—Cl ’ —CO ’

One can also show that this filter satisfies the following integral equation
(see App. A for proof):

Tt
s K (Lo = “ K, (tu)h (0,2) Ky (2,%) dudz T, st, x sT, (21)
i

or. using Eq. (6),

T .
K (t.%) = ‘JJI (K (tw + K (b 0.2 [K (20 jdudz  (22)
T

16
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2. Receiver Structure #2

A second interesting interpretation of the optimum receiver can be
obtained. We divide h L(u,z) into two parts:

Tt
}lA(u.z) =Jg(u,w)_l$[;l(w,z) dw (23a)
T
where
Tf
[k, ok 2= sl (23b)
T.

1

Then, substituting into Eq. (22), we obtain an integral equation that
g(u,2) must satisfy:

T
f

K, (tx) = “_'S(t,u) +K_ () ]g(u,x) du T, stx T (29)
Tj

This equation is familiar; the matrix g(u,x) is related to the matrix
filter one uses to find the minimum mean-square estimate of s(t), given the input
r(t). Specifically,

Tt
. T
s = Ig (x,u) r (x) dx (25)
Ty
The test statistic is:
T
f T
L = ﬂ dtdu r (9 h (t,u) 1w (26)
T

17
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(The factor of 1/2 is absorbed in the threshold )
Substituting Eq.(23) into Eq. (26),we have:
T¢

J awe Togenk ! vurw (27
T; '

Writing

Tf
2z = | kv du (28)
Tj
we have

Ty
L = J‘gT(v)E(v) dv (29)
Tj

The receiver shown in Figure 31 is an alternate version of th:
estimator -correlator of Figure 2 that we find usefui in the sequel.

o z ()

> i L
.En.l("u) _-'>,_ﬂ
DECISION

T L
G: j d’ DEVICE
i

H
A
£
_

FIGURE3  ESTIMATOR CORRELATOR RECEIVER:
FORM #2 OF THE OPTIMUM RECEIVER

t The symbol @ denotes a dot product égT The double lines indicate vector signals.

18
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The vector z(t) also has a familiar interpretation from the active
sonar case (e.g., Van Trees,Ref. 16 or 5, Chap. 4). It is the input to the
correlator, as shown in Figure 4. The other input is f(t), the known signal.

£ ¢

—3 = T :{)x:?——~ [ao p—=t
ﬁ :

[0

-t

FIGURE 4 ACTIVE SONAR RECEIVER

We now derive a third receiver structure, one that is commonly
used in practice,

3. Receiver Structure #3

A third interpretation of the receiver structure is also useful. To

obtain this interpretation, we write h(t,u) in terms of an integral.
A

T¢
h (tu) = jE(z,t) k'(z,u) du (30)
Ty

19
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Then

T T T

R - f
L =J dzJ r (0 k (2.9 de j k' (z,u) r (u) du (31)
Ty T T;
If we define
T¢
. T )
x(@ o [ K zured, (32)
Tj

then the two inner integrals correspond to the squared magnitude of x(z).

Te T
L=[a|| [fToreaal?] (33)
T Ti

The resulting receiver is shown in Figure 5.

1) L |oEcisioN

|| DEVICE

FIGURES  FILTER-SQUARER RECEIVER:
FORM #3 OF THE OPTIMUM RECEIVER
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The two remaining problems with the receiver are:

1. A convenient closed -form expression for the
infinite series on the right hand sid: of Eq. (12b)
that is part of the bias. (This term is evaluated
in Appendix B.)

2. Some measure of performance of the receiver.
This problem is discussed in tne next section.

B. PERFORMANCE OF OPTIMUM RECEIVER

The performance is difficult t¢ compute in the general case. A
quantity that provides a reasonably good indication of performance, particularly
when the input signal -to-noise level is low, is:

, _{e[ein J-e i ]}

. Var[L | HO] 9

This corresponds to an output signal -to-noise ratio. Its value as a performance
indicator has been discussed in detail by Price (17)

The calculation is straightforward:

T¢
L=[[20n,uredaa (35)
T;
T
E[LIH ]=E {“‘_r_T(t) h, (t,u) £ (u) dt du } (36)
Tj
But
ATBA=Tr[B(AAD] (37)
s
[¢] Tf
E[LIH ]=Tr [[h,cuK @udd (38)
T
{
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Similarly,

T¢

E (L1 H|=Tr || h, oK@ dd (39)
T,

Thus, the term in the numerator of Eq. (34) is:

'y 8E[LIH ] E[LIH, ] (40)
Tt

& = Tr JJ h (L) K_ (t,u) dt du (41)
T;

The mean-square value follows in the same manner:

Ty T
e[l b, ] =g [ - [ fon,ure T (h () ) dedudxdy
nooT (42)
1 1

Using the factoring properties of Gauss.un variables, it follows that

E[LZE‘”()]:{E[L' Ho]}z

T Ty
+2E, J . . J LT(t)?_1_,(t.u)i_(o(u,x)}ll_(x,y)i(‘v)dtdudxdy
T, T ) ] (43)
Ty T¢
’V : i )2 [ ! 4 < - frr .
- & [L Ho gt ZTr% J R u K (ux)h () Ko (v 1) dedu dxdy
T
! 1

The variance 1s just the last term.
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Therefore

Tg Tt 2
Tr J J h, (t,u) K _(t,u) dt du
T, T
o - — — (44)
Te  Tg
27Tr | - b @K @ Gy K (v, dtdudxdy

T, T

The denominator can be simplified by using the expression in Eq. (23)
forh  (t,u) and h (x,y) and observing that
- -0

Ty
[k vwk @ =1 8w (45)
T

Performing the integrals, we obtain:

T
@ = 2Tr .[_f g(t,%) g (x,0) dx dt (16)
Ty

C. COMMENTS

In this chapter we Jerived the structure of the optimum receiver for
the case of Gaussian signals in Gaussian noise. To impiement it, we must
solve Eq. (22) or (24), which follow.

Ty
K (o) = j] K (u+ K (tw) b (u.2) [K(2.x) dudz T stx L.T‘ (22)
T
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ar

Ty
) " ‘ < - -
K (0 = | (K (Lw+ K (tu) ]g(u,x) Ttk T (@24
T
We also found that the output signal -to-noise ratio
Tg
(12 =2Tr JJ g(t,x) g(x,t) dx dt (46)
Ty

depended on the solution to Eq. (24). For arbitrary observation intervals and
random process statistics the solution is difficult. Explicit solutions can be
obtmined 1n several cases of importance:

1. If the signal and noise processes arc stationary
with rational spectra, one can transform the
integral equation into a differential equation,
solve it, and substitute the solution into the
integral equation to satisfy the boundary condi -
tions. This case is conceptually straightforward
but extremely tedious.

2. When the noise is “white,” Kn (t, u) can be written as:

No
K (tu=—1

If the largest cigenvalue, 3, of K (t,u) 1s much less
than N()/2, a solution follows ca::ﬁ_v. This is commonly
referred to as the “threshold™ or “coherently undetec -
table™ case. One can show that

h  (t,u) KQ (t.u).
3. I addition to the conditions of case (1}, we assume that
T=T,-T
{ 1

1s long, then a very simple solution can be obtained
using Founier transform techmques . This casce s
appropriate in most sonar problems and s developed
in detal an the next chapter.,
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II. LONG OBSERVATION INTERVALS., STATIONARY PROCESSES

A. GENERAL CASE

In this case, simple solutions for the integral equations can be ob-
tained. We assume that the signal and noise processes are wide-sense station-
ary and that the observation interva! is long.

First, we solve the equation for the optimum processor filter
hi(u.z). Welet Tj=-T/2 and Tg =+ T/2. Then, by Eq. (21),

+T/2
K&x) = | K@Euh,u2)K (zx)dudz (47)
-T/2

3
We then multiply by Kn (x, y) and integrate with respect to x. In
addition, we can write the covariance functions in terms of differences of their
arguments:

+T/2 +T/2
-1 . .
l_(_s(t - x) lsn (x - y)dx = Ei(t - u)gt(u - y)du (48)

-

-T/2 -T/2

Now we define the Fourier transforms of the various matrices. For

example,
S () = dwe ¥k () (49a)
- -n
and
K (e | sy (49b)
-n e 2~ .
25
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Observe that

5:(!‘) = §;(r) (%)

1
Next we write Kn (<) and h (<) in terms of their transforms.

+T/2 +®
) . L) L g gy et Idx oY) de
dx Es(’ x) | iﬂ (1) c 2~
-T/2 - -
(30)
+T/2 +r
_ T (e oTIX V) dy
= K(t-x)ax o H.(xe 7
-T/2 - ®
Re-grouping terms,
- +T/2
o+ - . -t - -:
. %é JHa-y) ‘ Es([ _x)eJ‘( X) 4x s (1)
- = 'T/Z
(613
= +T72
. ;L: c*JL(tQ\') i_(l(z-x)c-y"(('x’d;t. H (1)
- - -T2

As T = the terms an the parentheses approach S (1) amd 54{1)

respeatnnelv. Theretore.

S (1S (1) = s (OH (1)
-~ -1 -1 -
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or

1

H.6) =S @S WS () (53)
From Eq. (23). it follows dircctly that
Gs) = 5 (0)S () (54a)
and
QT(J:) = §:('.u) §;l.(m)

This result is well-known from unrealizable Wiener filter theory. The output is:

- S t
10 %6 o Rew (54)
The test statistic is:
+T/2 +T,2
L= ] O wraw 3)
“T/2 -T/2

This can be expressed in the {requency domain as:

L= RTwHmRw B (56)

tHere R(1) is the Fourier transform »f r{t). To be correct. one should use the
';n(cgm_tcd transform. but the ordinary transform is more familiar so we use 1it.
A script ﬁs(x) denates the Fourier transform of s{t). while an ordinary S (1)
denotes the puwer density spectrum . -
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Two receiver corfigurations are shown in Figure 6.

-1/

(i | | ) DECISION
e— (o)-———m f § f————a{  DEVICE

=i -1
L 55, s, @ Bl

(a)
) 1
s, W) ﬁ
Q) % L DECISION
dt i 4 DEVICE
-12
. _{)
S, (W) § {w) ‘
-$ -1
30
(b)

FIGURE 6 OPTIMUM RECEIVER: LONG OBSERVATION INTERVAL

The perfcrmance can also be expressed simply. Re-writing Eqs. (44)
and {(46) in the transform domain, we obtain

f ? d’n 1
L UT L BOS M5y
d® = = (37)
2 2 2 qu
Tr -er | G(w)! 5

In ~everal special cases the results can be simplified.
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B. SPECIAL CASES

1. Threshold Case

In the threshold case the input signal-to-noise ratio is low. If

Ss. iJ.(w) << Sn.ij(w) (58)

for all i,j and w, then we call the problem a threshold problem. (Eq. (58)is a
stronger condition than necessary; some weaker conditions will arise later.)
This equaiion simply says that each element in the signal matrix is smaller than
the corresponding element in the noise matrix.

»’I’hen.
5 (0} = S (@) + S (@ = S (W (59)
and
~ -1 -1
H@=5 @S @S W (60)
and
Glw) T 5 () S (w) (61)

The performance index d° becomes:

(. F -1 Vet dw 1
] fre | 8 w5 s w50 5]
d? - ,,2_ m' (62)
¢ -1 -1 dw
{re [ sy w505 @50 5t}
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Cancelling the common term, we have:

Tr [ s s s @s w5 (63)

& =

o) -3

2. Homogeneous Noise, Threshold Case

In this case, the signal spectrum at each hydrophone is identical and
the noise spectra are also identical. Then we may write

5, = S_() Pw) (64a)
5. (@) =5 (@) Q) (64b)
Here P(v) and Q(w) represent the cross-spectral terms.
Then,
S (w) 1 "
H () = Q WPw)Q (w (63)
S (w)
n
and
Ss(w) N
Glw) = S Q (w) P) (66)
n
and
> S ()
_ T 8 -1 -1 7 dw .
=3 o " [ WPWQ WEw] S 67
n
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3. Single Signal Case

We now turn to the case of principal interest to us. Consider the array
shown in Figure 7. The coordinate of each hydrophone is denoted by a vector, 1;.
We assume that the signal component at ~ach hydrophone is identical except for a
time delay.

st - 71,)
st - T,)
st) = ' (682)
s(t - 'rN)
z
? PLANE WAVE
SIGNAL
PROPAGATION
HYDROPHONE
LOCATIONS

L 3 - DIMENSIONAL
ARRAY

FIGURE 7 HYDROPHONE ARRAY: PLANE WAVE SIGNAL
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A simple case in which this assurption is true is the case of a plane
wave whose line of propagation is along a vector a. In this case

- (68b)

We will consider this case in the sequel because of its easy physical interpreta-
tion. The modification to account for the gener:l case described by Eq. (68a) is
obvious.,

Substituting Eq. (68b) into Eq. (68a)., we obtain

- -

2

a-.r,
s [t -
s(t) = < ¢ ) (68¢)

Then,

S w) = S _{w) Pw) (69a)

where
+i2 . [r, -]
c—-— =k =1
Pk{,(w) = e (69b)

In this case, it is easier to perform a preliminary operation on the
inputs so that the outputs of the hydrophones are in time synchronization. This
corresponds to "steering’ the array and is obtained by a set of delay lines, as
shown in Figure 8. Observe that we have indicated negative delays; these are ob-
tained physically by including a common positive delay. The noises at the output
are a function of the steering direction.
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g-)a r'
ntv | — S() + nfr +_C__1) ML
T..l." = P
DELAY
rz(f) l"z(')
- S34] >
. DELAY
fN(') S(’) + "N(' + TJ! L )= '.N (')
2. -
DELAY

FIGURE 8 ARRAY STEERING

The new noise spectral matrix follows easily.

+ j-u-) (QJ_I:J - Ei',l_'_i)
5, 078, @e (102
ij ij
and
- —
1 1 1 1
S =sw): . : (70b)
1 1
L B
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From this point on we will regard the steered outputs as our basic
input. For notational simplicity, we will leave off the primes.

To realize the filter as shown in Figure 3, we find G(jw) as given by
Eq. (54). Denote the elements in the inverse of S, (jw) as S&J (w). Then,

S;“(w) S W) . .. S;N(w) Ss(m) Ss(w) .. Ss(w)
G(w) = (71a)
N1
Sy () 5. W) 5 (@) 5,
_ JL i

ot N N N
) st stw .. ) st
_|=1 j=1 J::1
N
2j
G(s) = S_(uw) 2 S:7 (W) (71b)
_ [
N N
PN ) s
Lj =1 j=1

The output is an Nx | matrix & () which is defined by Eq. (54b).

Substitutinz Eq. (71b) into Eq. (54b). we find that each element in the
matrix is identical. The elements are the estimates of Js(w):

N N

- . b - i),

P =S g0 ) ) SUGDRGY (72)
i=1 j=1
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From Figure 6, we see that we want to form the dot product between
z(w) and L[s(iw). In Figure 9(a) we show the receiver for this particular case
using matrix notation. In Figure 9(b). we show the actual operations. Note that
each element in 3,(jw) is the same. Therefore, we can add the elements in z(w)
and then multiply the two scalar quantities. The resulting receiver is shown in

Figure 10.
A — Z(w) :
 salw) —p3 - 12
L | DECISION
) -
. e - / DEVICE
. Slw)] 1/2
T o
Glw) >":
(a)
N
"\ 0 Z ()= 3:' s, Rlw) ~
e e ! xf ‘/’
o | . ) . L | oECISION
o |3 (@ . . f @ =1 bevice
* . n: "/2
™ - N Nj \Xf
Z, (W)= i§' Sp Rfw)
N N
2‘(..).s.(.,).z .Zs',' (@) R (w) |
vl(') =l =l
it
] 6N
N CNTRE XTSI D NN S LAWY

i=l =

(b)

FIGURE 9 OPTIMUM ARRAY PROCESSOR: SINGLE SIGNAL SOURCE
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Zﬂu)
NN
Zpw) Zte) =) Y 5, (w)R(e)
-1 izl =
Sy (w) . Vi
[ ]
[ ]
ZN(M)
lﬂw T
R (w) 7 L DECISION
2o steerinG f &t Joemd DEVICE
[ ]
. -1
iy /2
IN(v)

¢l(w)

S'(u)

N N )
Z z S, (@)t (w) i

iz |3|

FIGURE 10 OPTIMUM ARRAY PROCESSOR: SINGLE SIGNAL
SOURCE (ALTERNATE FORM)

The difficulty with the receiver structure in Figure 0 is that there
are two separatc combining operations. We will eliminate this difficulty by
proving that we can obtain As(.ln) by passing z(ju) through a (scalar) lilter, F(ju).
In other words, we want to prove:

300 = FO2)202) (733)
or
N N N N
s - sl R 03 = FOa) 2 E S:JO'») R G9) G3b)
i=1 )=1 i=1)=1

drthur B istle Iu:.




In matrix notation,

5,090 17 3, () RGw) = 17 FG) 5. ) RGw) (73¢)

where

=Tt ... 1] (74)

Equivalently, we must prove:
-1 -1
s (017 5, o) = 1T FGa)s () (75)
st~ = - -n
Post-multiplying by S, (ju). we have

5,091 = 1TFGw's G 5,60 (76)

Using Eq. (70b) and the definition of S (w), we obtain.

r ——
N N N
Y osi gl R,
Z- Sn Lsn 24 Sn
= i=1 i=:
N
a7 T . AN
S8 1 = L FG)S G | ) s 77)
1=
N N
L SNJ "“ SN]
n o n
le )= _J
+ FGa 1L
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This implies

Ss(lu) =

Defining

we have:

AG) S _(5)

Fla) = S Ga) + AQ)

(78)

(79)

(80)

The resulting realizatior is shown in Figure 11. Alterna:ely, we see
that we can realize the receiver in the filter-squarcr form as shown in Figures
12a and 12b. (The purpose of the modification in Figure 12b will be apparent in
Chapter IV.) In Figure 13, we show the resulting structure under the threshold
assumption. (Here, we assume S (») < < A{w) for frequencies of interes:.}

This completes our discussion of the general receiver structure for
the detection problem. In Chapters V. VI, and VII, we will look at some particu-
lar problems. Before doing this, we will demonstrate how a similar structure
arises when a waveform -estimation apgruach is used.

lz {w) MATRIX
— 141873

FKOURE 11

2}

1/2

f &« -.-L

=T1,2

Aw) > TRFEE

SIMPLIFIEDY FORM OF OPTIMUM ARRAY PROCESSOR
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R.(U)
—_— YRR )
MATRIX A (w) s (w) 2 DECISION
— e —— - o] SQUARER |t f d DEVICE
. ]
. (s, () ¢ A (u))ﬁ -1
e
IN(N ]
(a)

.l (w) 12

e — ‘/’

) (o) Z (w) S (W) [
—— e [——— A P ==t SQUARER -
b o) FILTER Yiwi | 5w A (A m(wﬂ an
e e—

{b)
FIGURE 12 FILTER-SQUARER VERSION OF OPTIMIJM ARRAY PROCESSOR
172
L)) MATRIX Zl{ew) s l/’(.)
= e A le) }—o=t —'—A—(—;- R e U —— f @ b——a
-
-1

FIGURE 13 THRESHNLD CASE
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IV. SIGNAL WAVEFORM ESTIMATION

In many cases detection is not the only question of interest. For
cxample, we may want to process r(t) to obtain a geod estimate of =(t) to use
in a classification probiem.

In this chapter, we discuss twc possibie appioaches to waveform
estimation. The first is called "distortionless™ filtering because the processor
is designed so a -~ not to distort the signal. The second is the classical inini-
mum mean-square error approach. After deriving them separately, we show
that a matrix MMSE filter can be viewed as a cascade of a matrix distortion-
less filter and a sca’ar MMSE filter. This result, which is due to Kelly, (18)
is important because it enables us to perform a distortionless combining of the
hydrophone outputs and observe it before introducing the signal distortion caused
by an MMSE filter.

Finally, we relate the waveform estimation problem t» the detection
problem and show that t+  distortionless combining operation ‘s the only matrix
operatisn necesszry in both cases.

In this chapter we will assume that the signal is a plane wave whose
direstion i« known. As discus=.d in Section B-3 of Chapter III, we assume that

a1 deitays *~ steer the array on the target hav> already been inserted.

Thus, r(t) is an N-element column matrix whose elements are:t

ri(t) = s{t) + ni(t) (81)

The spectral matrix is §n(w), where:
;E’ T -jwoT
S =] Eln@n -Dle™ dr (82)
- &

with this mode!, we first develop the 1dea of distoriionless filtcring.

ﬁs before, the primes are suppressed for notational simplicity.
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A. DISTORTIONLESS FILTERS!

The filter of interest is shown in Figure 14. The outputs of the beam-
forming operation are given by Eq. 81. Each cutput contains the signal s(t) and
a noise n;(t). These inputs are filtered and summed to give a single output y(t).

[ ()
DI (w)
o ()
> 0, s (0 +n (0
[+
o
N
: DN (w)

FIGURE 14 DISTORTIONLESS COMBINING
It is required that, in the absence of noise,
y(t) = s(t) (83)

for any signal s(t).

Under this constraint, we wish to minimize the variance of nc(t).

t The 1dea of combining multiple inputs in a statistically optimum manner under
the constraint of no signal distortion is due to Darlington.(lg) An interesting
discussion of the method is contained in Brown and Nilsson's text.(20) It was
deri.ed independentiy by Levin(2!) as a minimum -variance unbiased estimator .
A simple derivation is given by Kelly;(ls) our discussion follcws this later ref-
erence.
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The output of the filter is:

N
, T,. . N . ,
Y(u) = D (w) RGw) = ) D,(w) R, ()
i=1
where _Q(jw) is Nx 1l matrix.
D, Guw)
Dzﬁw)
D(w) =
The constraint of no distortion implies:
N
) DG = 1
i=1
or
1T DGw) = D Gw 1 = 1
for all w.

The variance is:

42

(84)

(85)

(86a)

(86b)

(87)

Arthur D.Wittle, Ine.




Now,

T T e T %
5, @ - E[D (wn_(u)n Gu)DGu) | (88a)
5, O - D" (u) §_(9) D" (u) (38b)

We want to minimize c,fc subject to the constraint in Eq. (86b); to do

this, we use the Lagrange multiplier technique:

F = ‘J; {QT(jw) %(jw) _D*(jw) + XLT_QOW)};—:: (89a)

Since the integrand is always positive, we can minimize at each
frequency.

£ 2 0G0 (0D*Gw) + 1D (w1 (89b)

Differentiating with respect to D.(jw), the rth element in D(jw), we
obtain

[0...1...15 (©)D*Gw) + 2[0...1...01 = 0
r=12...N
(90a)
This is equivalent to a single matrix equation.
$ (9)D*Gw) = -1 (90b)
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-1
Pre-multiplying by S, (jw). we obtain

N o -1
D (uw) = )\§n (w) 1 (91a)
or
®
ro-1 ,
DGw) = -\ [S (W] 1 (91b)
-1 =T
= s ]
or
N
o ij .
D,(u) = - A ) s Gw (91c)
i=l
The value of ) is obtained from the constraint equation (86a):
N N N
L S P
) D,ju) = A) ) ShGw = 1 (92)
j=1 i=1 j=1
so
-1
N N
- = \’ V IJ i _—A_- 3
\ Z S, () A Gw) (93)
i=l j=1
Therefore,
N
VI s |
D, ) AGw) ) s Gu) (94a)
i=1
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The distortionless combiner is shown in Figure 15.

N
2 57 (w) Ryw)

D‘(w’ dall = o

o

ooo*

(')1 DN (w) S Y (w)
N ,‘?,S:N(“'”N(“')

Z(w)

FIGURE 15 OPTIMUM COMBINER

We see that the signal z(jw) is identical to the combiner output in
Figure L1. Similarly, we see that the distortionless waveform Y(jw) also ap-
pears in Figures 12 and 13b.

)

1=1

1j .
Sn (w) Rj (jw)
1

N
z S1J (w)

e

(94b)

Y(jw) =

"MZ

The variance using distortionless processing follows easily. Substi-
tuting Eq. (94) into Eq. (91b) and the result into Eq. (88b), we have:

5, 0 - Mo 1TSS G0 S (w1 M (95)
But
178 Gorn = (AGe)” (%)
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Therefore,

Sn (w) = AGw) (97)
C
and
i ;\«u)§§§ = o2 (98)

Several cbservations now follow easily:

(1) Looking at Figure 11, we see that §(t) is obtained by
operating on the distortionless output y(t) by a filter

sscv)
S + A (9%a)

This is precisely the optimum unrealizable Wiener
filter for estimating s(t) using a minimum mean-
square error criterion when the input is y(t). (Since

the "noise"” spectrum is A(w)). The mean-square
error is

) ©  Nw) Ss(w) du

“mmse _.Ja Ss(w) + AQw) 27 (9%) .

(2) All of the processing up to y(t) in Figures 12, 13b,
and 16 is independent of the signal. The effect is a
noise-reduction due to combining. In Figure 16 we
re-draw the receivers in Figure 12 and 13b to empha-
size the distortionless signal.

Before leaving waveform estimation. we will consider the problem
from a different viewpoint.
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e

=D&

MATRIX
FILTER

o

1y

Alw)

y(H
MINIMUM

S (w)

I g §,lm$+K!u$

dt —’L

—

A
s (1)

NOISE: DISTORTIONLESS CSTIMATE

MINIMUN,

MEAN-SQUARE

ERROR ESTIMATE

FIGURE 16a ESTIMATOR-CORRELATOR RECEIVER

MATRIX

=TI IT] FILTR

2 {t)

A

(1)

5,2 (w)

(S (w) + Awn'? A

i SQUARER

FIGURE 16b FILTER-SQUARER RECEIVER
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B. MAXIMUM LIKELIHOOD ESTIMATES AND GENERALIZED LIKELIHOOD
RATIO TESTS

The derivation of the optimum distortionless filter started with a
rather arbitrary linear filter restriction

One can also approach the problem
from the standpoint of 2 maximum likelihood estimate of s(t)

The tikelihood function of r(t), given s(t).is

Ln A(r(t)s(t)) =

[ wiTs RS

[ Y

[ RTws " 1aw S (100a)

- f (w) 1 J(w)—

where we have assumed an infinite observation interval and stationary processes

The maximum likelihood estimate of (1) is simply the function 3 L(”)
that maximizes the likelihood function. To find it, we set

i) = im S0+ el (@) (100b)

differentiate {nA with respect to ¢. and require the result to equal zero for ¢ =0
and all "ic(")' This gives

™ -1 -1 - .
co e {78 wRe - TS WL e
(100c)

= (x)Sn (u)l -4t 1 ﬁn (.u)l}

a

r
+ 4 (y)=— <R
] C(JJ) FALEEN G o

tThe r- -ults through Eq. 100 were previously derived by Kelly and Levin (22)
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The two bracketed terms are conjugates. Since s\e(w) is arbitrary, the term
inside the bracket must equal zero for all w. Therefore,

i @1Ts @ = 1T @R

(100d)
Writing Eq. (100d) out, we have:
N N
Y sU@R ()
Lol cp W i
. i=lj=1
09 N N (100e)
)L S
i=tj=

Looking at Eq. (94b). we see that }mL(jw) is identical to Y(j4).
Observe that there was no a priori restriction to a linear processor.

The detection analog to the maximum likelihood estimate is the gen-

eralized likelihood ratio test (e.g., Davenport and Root, Chap. 14(1) or Van Trees,
Section 2.5.0))

The generalized likelihood ratio test is

max p [E(t)| Hl—s

A () = O — 2 (101a)

The numerator is simply p {r()| H; ] evaluated at s(t) = ;ml.(t)

Substituting Eq. (100e) into Eq. (100a) gives 4n Ag(_[(t)).
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l ) T_ -2 di
a = 2 ) . : )
nlg @) =+ 5 . (B LS () R(w) 57
{LGIDb)
LT T L e >
® . - - Ly Uy .
f7 L RTms W 0T o
(We incorporated the last term into the threshold.)
Now,
;) = AW LTS ) R(Y
m! - -
") RIS () 1 (101¢)
= i(l.‘)g (L)_Sﬂ (-‘-)_ ¢
T, e 2
= MoR @)S_ (1)1
Substituting Eq. (10lc)into Eq. (101lb), we obtain
- )
| S | mi dy
A = —_ Y o— —
in .\g(E(l)) + 2 . )ml(l) M) 2+
(101d)
-8
L T
2 . .\(1) ﬂ\’ 2"
(Recall (1) s real)
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Therefore,

o "mlh’) d
{n .\g(_!'(t)) = ; T:-—‘ 5= (101e)
-w AN (x)

Using Parseval’s theorem. we obtain the receiver for the generalized
likelihood ratio test that is shown in Figure 17.

MATRIX A 1/2
o) s malt) L
: FILTER ! SQUARER f )
A7)
112
LNERR FILYER

FIGURE 17 RECEIVER TO IMPLEMENT GENERALIZED
LIKELIHOOD RATIO TEST

C. SUMMARY

In this chapter, we have related the ideas of distortionless filtering
and maximum likelhihood estimation.  Criteria of this type are appropriate when
the signal is 3 non-random. but unknown., waveform. Further. we found that the
generalized likelihood ratio test is closely related to this estimation procedure.

Combining these results with those of Chapter 1L we obtain the com
pusite receiver shown in Figure I8
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STEERING

U

LINEAR

> ] COMBINER

BAYES OR l
NEYMAN- PEARSON
TEST

1/2

z (1)

A ()

1/2 ‘ml "

X f dt '—":75 |

A (o) FAOM-LIKELIHOOD ESTIMATE

SQUARER

(MIN,

NOISE DISTORTIONLESS ESTIMATE)

12

-1/2

>
———-><yg

GENERALIZED LIKELIHOOD
RATIO TEST

FIGURE 18 CRITERION INVARIANT RECEIVER
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V. HOMOGENEOUS NOISE: ARRAY GAIN

A special case of interest is when the noise is homogeneous.

Specifically,
I )
S (Gw) =S (w = S (jw) (102a)
Ny, n. n
and
Snij(_]w) = Sn(Jw) pij(Jw) (102b)
Let
2(jw) be a normalized cross-spectral matrix with
elements Dij(jw)
Then,

s (e = (5 (o) 2 Gu (102¢)

One realizati~n of the resulting receiver is shown in Figure 19.

In this case, it is easy to evaluate the effect of the array on the per-
formance of the system with respect to the following three criteria:

(1) Detection performance index (Eq. (67))

(2) Distortionless signal; minimum noise variance
(Eq. (98))

(3) Minimum-mean-square filtering error (Eq. (99b))
We shall consider these three cases in order. At a single hydrophone:

o S (w)
- T ] dw
42 = L _—Sn(’”) T (103)

[N

This is simply the scalar version of Eq. (67).
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To evaluate d®, we look at the signal spectrum of y(t) in Figure 19.
The signal spectrum is Sg(w), and the noise spectrum is A(w). Therefore,

T [- ]
) _L (10
but
-1 u A Aw)
A= Z Z (’)S(m) BEN) (105)
i=1 j=1 n
Therefore,
® 8(w)
'g _L Az(W)g(_fr (106)

We see that the effect of the array is contained completely in the func-
tion A(w). This function is commonly referred to as the array gain

(w)
SMw) Z Z o (w) (107)

i=1j=1

Aw) =

For independent noises, the array gain is simply N.

i
We recall that the elements p J(t.u) incorporate the effects of array
steering. In terms of the unsteered noise matrix,

N JTeelyogl oy 108
A(w)=zz e po(w) (108)

tWe could also work directly with Eq. (67) (see Appendix C).
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Thus, unless the noise matrix is diagonal, the array gain is a fuaction uf the
steering angle.

The array gain also arises naturally in the other cases.

For distortionless filteiing, the variance at a single hydrophone is:

(109)

At the combiner output,

Sn(w) du
AMw) 27

o? = Ji A(w)%-;: - _i (110)

For minimum-mean-square error filtering, the error at a single
hydrophone is:

g2 = i M dw (111)
T J, SS('n)+Sn(w) 2
At the final output,
® S (w) A(w) du
_L S (w)+ ANw) 27
(S (w))
© S (w)
Aw)
_L 5,0 b (112)
S (w)+ o)

Therefore, for any of the three purposes, the array gain completely

characterizes the effect of the array. It is dependent on frequency and steering
angle, and its effect is to reduce the noise.

In the next section we derive various noise models and find the array
gain for some interesting configurations.
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VI. DISTRIBUTED NOISE FIELDS

In Chapters VI and VII we apply the preceding results to simple
examples. In this chapter, we shall consider noise fields that are distributed
over a region in space.*

A. HYDROPHONE NOISE ONLY

Example 1

In this case, the only noise is hydrophone noise, which is assumed
to be independent from one hydrophone to the next. For simplicity, we first
assume that the noise spectra are identical. Thus,

Sn,ij (w) = Sn (w) 6ij (113)

In this particular case, it is clear that the spectra after steering
are identical .

Thus,
Sn’ij (w) = Sn’ij (w) (114)
Clearly,
s'l( )y = 1 I 115
=n ¥ S (w)y - (115)
n
Combining consists of a simple summing operation.
The array gain equals the number of elements in the array:
Ao(w) = N (116)

Since all of the noise is assumed to be hydrophone noise, the spacing and
location of the elements are unimportant.,

The modification to include different noise levels is straightforward.

*As pointed out in the references,the results in this chapter are duc to Dr. E.]J.
Kelly, Jr. His contribution is important to the over-all unity of the report, and
we are happy to acknowledge it.
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B. ISOTROPIC NOISE ONLY

Several models of noise geometry lead to what is called an isotropic
noise field, Two of these are:

(1) The noise is assumed to consist of uncorrelated
plane waves with identical statistics coming from
all directions (e.g., Marsh(23)).

(2) The noise is generated by uncorrelated noise
sources uniformly distributed on the surface of
a large sphere (e.g., Faran and Hills (24) ).

If the noise is assumed to consist of a single frequency, then it is
easy to show that

o (1) = SMj s g (117)
g kd
ij
where
2ﬂf0
k = is the wave number
c
c is the velocity of sound
f, is the frequency
and
dij is the distance between elements

Due to the spherical distribution assumption, the correlation func-
tion (before steering) does not depend on the orientation between the two ele-
ments.

A simple extension of the single-frequency case is when the noise
spectrum at each point on the sphere is the sarae (say Sn (w) ). Then, it
follows easily that

4
. (ju) = e S () (118)
ij d n
3

The correlation function may be found, but it is not necessary,
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Example 2

To illustrate the isotropic noise case, we consider a simple ex-
ample due to Bryn(13). The array is shown in Figure 20.

_1

°

—

)

..--+--T-_L_-

SIGNAL

FIGURE 20 UNIFORMLY SPACED FIVE-ELEMENT ARRAY

It consists of tive elements arranged in a line. The signal direction is per-
pendicular to the array. In this case, no delays 2re necessary for steering.
The normalized spectral matrix is:

B 1 sinu sin 2u sin 3u sin 4u a
u 2u 3u 4u
\ sin u sin 2u sin 3u
u 2u 3u
p(w) = (119a)
1 sin u sin 2u
u 2u
(symmetrical)
1 sif u
u
L 1
where g = doo o9 (119b)
c A
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The array gain, A, (f), as a function of u is shown in Figure 21,
The gain obtained by a straight sum is also shown in the figure., We see that
for spacings greater than half a wavelength the two are essenully identical.

8
[ OPTIMUM DETECTOR
é | rid
’,\
3 .1 ,#” STANDARD DETECTOR
< pid
’
2 | J
S
0 0.2¢ 0.47 0.6r 0.8y =

(from Bryn; ref. 13

FIGURE 21 ARRAY GAINS

In this model the gains correspond to those obtained by Pritchard(25)
using a signal-to-noise ratio criterion. It turns out that the gains are large
and opposite. (s type i array is commonly referred ro as a "super-gain”
array; as one would expect, such arrays are sensitive to variations in the
gains and therefore are difficult to realize in practice. If one considers more
general arrays (the elements not necessarily in a line), then one can get a
singular detection problem for the isotropic noise model (see Gaarder‘(z‘” ).
One can eliminate this sensitivity and the possibility of singularity by keeping
the hydrophone noise it a non-zero ievel.

(rher array gain calculations have been made (e.g., B. Cron and
C. Beckert-7)),

We now turn to a second category of noise,
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VIE, DIRFOTENAL NOISE SOURC ES

Frequently, the notse that we want to combat has a strong directional
character. The himiting form of this category is a noise plane wave connng
from a single direction.  We investigate this I'miting case under the assump-
tion that \he direction is known ¢xactly, If the direction were not known, the
receiver would have to measure it, The results for the known direction pro-
vide a bound on how well a receiver incorporating measurement could do.

A simple model of directional interference is shown in Figure 22,

DIRECTIONAL NOISE

SIGNAL

.----‘-—

FIGURE 22 DIRECTIONAL NOISE MODEL

Thre noise is a stationary random process from a known angle 3,
For simplicity, we assume tha* the signal direction is broadside, The arra,
elements are uniformly spaced in a line. If we label the noise voltage at the
center eiement n(t), then for an array with 2N +1 elements,

6l
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n(t)

where

[n (t +NT)]

n(t;ZT)
nit+m7
n(t)
n-1

n(;-NT)

T = d/c sin @

(120)

The noise cross-spectral matrix is easy to find. For a three-

element array,

=N
d

(W) = S, (w)

-
1

+juT
e

+Huw2T

€

e-]w'r e~]u127

1

+HwT
e

e | a2

1

-

It is clear that this matrix is singular, For any value of 8 except

zero we can achieve perfect detection. Under H 1
I, (t-7) - I, t) = st-71) -
and under HO , r1 (t-7) - r2 t) = 0

which gives a perfect detectior. capability,

s (t)

for example,

(122a)

(122b)

Therefore, to make the pure directional noise problem meaningful

we must include a white noise component,

S

-=n

(w) =

No

~|
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For the three-element case,

1 )ce-‘w'r xe-ij'r
N . .
S W) = (—0- +5, (u))) xe 347 1 xe 10T (124)
- 2
xe 22U et ]
where
S (x)
x & d (125)
No
—_
> qd ()

The array gain is the sum of all the elen: .its in the inverse of the
matrix in Eq. (124). Taking the inverse and summing the elements, we obtain:

3(-%x") + &x(x-1) [2coswt + cos 227]

A(ju) = (126)

2
1+ 2x° - 3x
As we would expect, jor x =0

AGy) = 3

To indicate the behavior, we have plotted A (j 1) for two values
of WT in Figure 23,

For any given element spacing, these can be translated to a particuiar
value of 8.

For example, if d =1 /2, then
wr = 7sind (127)

and the two curves shown represent A =0 and 30°, respectively, We have also
indicated the array gain, A_(j») {or a conventional array which sums the outputs.

The procedure for finding the array gain for larger arrays or multiple

directional noise sources is conceptually straightforward, and the actual com-
putation can be done numerically.
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/I
d= x/2 /l
2"
A //
10
—
/ //ro
“ 0
5 Dl o -
o~ Ac
//
\\ |
l \l\\\ A (also Ac)
\\
1 — 4 \'\-
°° ——
0.5 Ll L
0 0.2 0.4 0.6 0.8 1.0

FIGURE 23 ARRAY GAIN VS
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V1II. CONCLUSIONS

\

The primary purpose of this report has-been to fit various tech-
niques and criteria related to optimum array processing into a unified
theory. Since the models one-uses are only approximations to the actual
physical situation, it is important to understand how various assumptions
affect the optimum receiver structure.

For an interesting class of criteria and signal models we found
that the optimum receiver consisted of a set of delays to steer the array
followed by a combining operation which depended only on the noise covari-
ance niatrix, The output of this combiner is a single waveform, which is
then processed depending on the criterion and signal model.
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APPENDIX A

DERIVATION OF EQUATION 21

Using Eq. (14) and Eq. (20), we can write:

EA(t,u) = - Ql(t,u) + go(t,u) (A.1)

Pre-muitiply by K;(z,t), integrate with respect to t, and use Eq. (9):

Tt T¢
[ xeontua = 166 -u + | xengewa (.2
T, T,

Post-multiply by Kq(u, x), integrate with respect to u, and use Eq. (9):
rl
jJ El(z,t) EA(t,u) lso(u,z) dtdu = - Eo(z,x) + El(z,x) (A.3)

Observing that

K|@.x) - Kjz,x) = K (z,%) (A.4)

we obtain Eq. (21).
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APPENDIX B

EVALUATION OF THRESHOLD

We want to evaluate the sum,

® 2 Cy
ZLn(l'f-ﬁ- )\i ) (B.1)

i=1 0

Using Eq. (16), we see that
Tf
j Tr [h (t,t —)]
-,
T,
i

where the notation 2/N0 emphasizes the dependence of h( - ) on the noise level.

2 o 1
— 9
N Z T2 ®.2)
1PN
0

T
o ) z f
cy _ .
Z Ln(l+ﬁ—- i) = jdz j Trl-_llc (t,t.z)]dt
i=1 0 0 T b0
i (B.3)
One can show that error matrix
Tf
— 1 l .
5c (t,t:2) =T j p_c(t,t.z)dt (B.4)
0 0
T.
1
S0
2/N0
A @) =T [ Tr [g (t.t:z)]dz (®.5)
1 —co
0
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APPENDIX C

EVALUATION OF d® BY USE OF EQUATION 67

In Eq. (L04), we derived d® usingt
Eq. (67) directly.

he combined signal. Here, we use

o Q2
| = Tr[Q W Pow @ Gw Rew] FE (c.1

A%(w)
~ |
N N {-N N ‘]
' ij,. N ke,.
= Z 2 0" (i) ! L 2 o ()i (C.2)
|i=lj=1 k=11=1
This is a straightforward exercise in matrix manipulation.
Recall that, after steering,
1 11 1
P(w) = |1 (C.3)
1 11 1

and

ptrw) o3 (w)

Q (u) = : "
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i

u: "
M e

Therefore

Q " Gu) P(w) =

Squaring this, we obt2in

[g"‘om) B(jw)]a

The trace is simply

L

which is the desired result.

N N
2}9“@0 Z oty e e e
j= j:
N . .
X 02J () . .
j=1
N N
E’DN%w) Z pN%w)
(C.5)
N N N I
z Z ptl ZOKL‘ ..
k=1j=1 =1
______ N
N | N N N
z 52} pk*-; Z Zpaj Z R
k=lj=l =i kelg=logsd JI_
—STTTTTT T
(C.6)
N N
2 L o5l =A%) (C.7)
k=1 )xx L=l
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We also observe that

Z

o>~ Z
Db‘k

Tr [Q () PGw)] = )
I j

(C.8)

i 1

so that, for this case,

{rr [Q" Gw gown}a = Tr [{9"0w) gom}z] (C.9)

The expression of the right-hand side of Eq. (C.9) is identical to
Bryn's result.
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Alw)
Ac(w)

e

ij
d2
D(w)

5(T)

E[-]
E [-]

F.,F

Ri(y

glw)

GLOSSARY

optimum array gain

conventional array gain

unit vector denoting propagation
direction

velocity of propagation

inter -element distance

output signal -to-noise ratio
transfer matrix of distortionless
combiner

delta function

expectation operation

expectation assuming ith hypothesis
is true

threshold

furctions used in minimization

known signal

transfer function of matrix filter

threshold
matrix filters

coefficient in series expansion

hypotheses
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e

(o= ™

n(t)

n.(t)

nc(t)

P(w)
%,®

Q,(t,u)

Q(w)

TNy A o oy A, - SR W A

M—WM

identity matrix

unity matrix

wave number
covariance matrices
matrix filter
sufficient statistic

like.ihood ratio

generalized likelihood ratio

Lagrange multiplier
filter function

scalar eigenvalues
mean-value vector on H ]

vector noise process

colored noise component

combined noise component

frequency

matrix denoting cross - spectra

vector eigenfunction

inverse matrix kernel

matrix denoting cross -spectra
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normalized cross -spectral mairix
received vector waveform

components of received vector
waveform

three-dimensional position vector
Fourier transform of r(t)

vector signal

illuminating signal

reflected signal

estimate of vector signal
random signal

spectral matrix

Fourier transform of s(t)

variance of combined noise

variance

minimum-mean-square error

delay

argument of covariance function

phase of reflected signal

angle of directional noise

initial observation time
final observation time

length of observation interval

(= 2—;-—- normatized .ariable
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VR amplitude of reflected signal
w(t) white noise waveform
y(t) distortionless output e
z(t) scalar output of combiner {
matrix notation; M
Tr [ ] trace ‘
-7 transpose 2
(-1! inverse -
. .
(-] conjugate B
s! ij element in inverse i
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